Digital Circuits ECS 371

Dr. Prapun Suksompong prapun@siit.tu.ac.th

Lecture 15

ECS371.PRAPUN.COM

Office Hours: BKD 3601-7 Monday 9:00-10:30, 1:30-3:30 Tuesday 10:30-11:30

Some questions...

 \mathbf{X}

- Is the exam too difficult?
- Is the exam too long?

Announcement

 \mathbf{X}

- Reading Assignment:
 - Chapter 7: 7-1, 7-2, 7-4

Digital Logic Circuit Types

- Combinational Circuit
 - Output depends only on current inputs
 - No feedback loops
 - "memoryless"

- Sequential Circuit
 - Output depends on past history plus current inputs
 - Contains feedback loops
 - Has memory
- Up to this point, we have focused on "**combinatorial logic circuits**" (i.e. the output of the circuit is dependent on the current input ONLY).
- Now we will shift our focus to "**sequential logic circuits**" (i.e. the output depends not only on the present input but also on the **history** of the input.
- The basic building blocks for sequential logic circuits are "latches" and "flip-flops"

Sequential Logic Circuits

- Memory is represented in the form of states.
- "State" embodies all the information about the past needed to predict current output based on current input.
- State variables are one or more bits of information representing logic signals in a circuit
 - Tell you "where the circuit is"
 - Used in conjunction with inputs to derive current outputs of a sequential circuit
- In combinational circuits, only need to look at the current inputs to get the current output.

Exercise

- Separate into a group of two persons.
- Can you come up with a simple device that is a good example for sequential circuit?

 \mathbf{X}

S-R Latch

- A **latch** is a temporary storage device that has two stable states (bistable). It is a basic form of memory.
- The S-R (Set-Reset) latch is the most basic type.
 - It can be constructed from NOR gates or NAND gates.
 - With two cross-coupled **NOR gates**, the latch responds to **active-HIGH inputs**.

• With two cross-coupled **NAND gates**, the latch responds to **active-LOW inputs**.

S-R Latch

• There are two versions of SET-RESET (S-R) latches.

(a) Active-HIGH input S-R latch

(b) Active-LOW input $\overline{S}-\overline{R}$ latch

The "Old Q"-"New Q" Analysis

$$Q_{new} = \overline{R + X}$$
$$= \overline{R + Q_{old} + S}$$
$$= \overline{R} \cdot (Q_{old} + S)$$

Input		Output
S	R	Q _{new}
0	0	Q _{old}
0	1	0
1	0	1
1	1	0

Active-HIGH S-R latch

Inp	out	Output
S	R	Q _{new}
0	0	Q old
0	1	0
1	0	1
1	1	0

Assume the latch is initially RESET (Q = 0) and the inputs are at their inactive level (0). To SET the latch (Q = 1), a momentary HIGH signal is applied to the *S* input while the *R* remains LOW.

Q Latch initially RESET

1

 $\mathbf{0}$ \mathbf{R}

To RESET the latch (Q = 0), a momentary HIGH signal is applied to the *R* input while the *S* remains LOW.

The "Old Q"-"New Q" Analysis (2)

$$Q_{new} = ?$$

Inp	out	Output
S	R	Q _{new}
0	0	
0	1	
1	0	
1	1	