Digital Circuits ECS 371

Dr. Prapun Suksompong

 prapun@siit.tu.ac.th Lecture 15Office Hours:
BKD 3601-7
Monday 9:00-10:30, 1:30-3:30 Tuesday 10:30-11:30

Some questions...

- Is the exam too difficult?
- Is the exam too long?

Announcement

- Reading Assignment:
- Chapter 7: 7-1, 7-2, 7-4

Digital Logic Circuit Types

- Combinational Circuit
- Output depends only on current inputs
- No feedback loops
- "memoryless"
- Sequential Circuit
- Output depends on past history plus current inputs
- Contains feedback loops
- Has memory
- Up to this point, we have focused on "combinatorial logic circuits" (i.e. the output of the circuit is dependent on the current input ONLY).
- Now we will shift our focus to "sequential logic circuits" (i.e. the output depends not only on the present input but also on the history of the input.
- The basic building blocks for sequential logic circuits are "latches" and "flip-flops"

Sequential Logic Circuits

- Memory is represented in the form of states.
- "State" embodies all the information about the past needed to predict current output based on current input.
- State variables are one or more bits of information representing logic signals in a circuit
- Tell you "where the circuit is"
- Used in conjunction with inputs to derive current outputs of a sequential circuit
- In combinational circuits, only need to look at the current inputs to get the current output.

Exercise

- Separate into a group of two persons.
- Can you come up with a simple device that is a good example for sequential circuit?

S-R Latch

- A latch is a temporary storage device that has two stable states (bistable). It is a basic form of memory.
- The S-R (Set-Reset) latch is the most basic type.
- It can be constructed from NOR gates or NAND gates.
- With two cross-coupled NOR gates, the latch responds to active-HIGH inputs.
- With two cross-coupled NAND gates, the latch responds to active-LOW inputs.

S-R Latch

- There are two versions of SET-RESET (S-R) latches.

(a) Active-HIGH input S-R latch

(b) Active-LOW input $\overline{\mathrm{S}}-\overline{\mathrm{R}}$ latch

The "Old Q"-"New Q" Analysis

$$
\begin{aligned}
Q_{\text {new }} & =\overline{R+X} \\
& =\overline{R+\overline{Q_{\text {old }}+S}} \\
& =\bar{R} \cdot\left(Q_{\text {old }}+S\right)
\end{aligned}
$$

Input		Output
S	\mathbf{R}	$\mathrm{Q}_{\text {new }}$
$\mathbf{0}$	$\mathbf{0}$	Q old 2
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$

Active-HIGH S-R latch

Input		Output
S	R	$\mathrm{Q}_{\text {new }}$
$\mathbf{0}$	0	$\mathrm{Q}_{\text {old }}$
0	1	0
1	0	1
1	1	0

Assume the latch is initially RESET (Q $=0$) and the inputs are at their inactive level (0). To SET the latch ($Q=1$), a momentary HIGH signal is applied to the S input while the R remains LOW.

To RESET the latch ($Q=0$), a momentary HIGH signal is applied to the R input while the S remains LOW.

The "Old Q"-"New Q" Analysis (2)

$$
Q_{\text {new }}=\text { ? }
$$

Input		Output
\bar{S}	\bar{R}	$\mathrm{Q}_{\text {new }}$
$\mathbf{0}$	$\mathbf{0}$	
$\mathbf{0}$	1	
$\mathbf{1}$	0	
1	1	

